0232 - Implement Queue using Stacks

0232 - Implement Queue using Stacks

Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push, peek, pop, and empty).

Implement the MyQueue class:

  • void push(int x) Pushes element x to the back of the queue.

  • int pop() Removes the element from the front of the queue and returns it.

  • int peek() Returns the element at the front of the queue.

  • boolean empty() Returns true if the queue is empty, false otherwise.

Notes:

  • You must use only standard operations of a stack, which means only push to top, peek/pop from top, size, and is empty operations are valid.

  • Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.

Examples

Input ["MyQueue", "push", "push", "peek", "pop", "empty"] [[], [1], [2], [], [], []] Output [null, null, null, 1, 1, false]

Explanation MyQueue myQueue = new MyQueue(); myQueue.push(1); // queue is: [1] myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue) myQueue.peek(); // return 1 myQueue.pop(); // return 1, queue is [2] myQueue.empty(); // return false

Constraints

1 <= x <= 9 At most 100 calls will be made to push, pop, peek, and empty. All the calls to pop and peek are valid.

Follow-up: Can you implement the queue such that each operation is amortized O(1) time complexity? In other words, performing n operations will take overall O(n) time even if one of those operations may take longer.

Java Solution

class MyQueue {
    private Stack<Integer> s1 = new Stack<>();
    private Stack<Integer> s2 = new Stack<>();

    /** Initialize your data structure here. */
    public MyQueue() {
        
    }
    
    /** Push element x to the back of queue. */
    public void push(int x) {
        s1.push(x);
    }
    
    /** Removes the element from in front of queue and returns that element. */
    public int pop() {
        if (s2.isEmpty()) {
            while (!s1.isEmpty())
                s2.push(s1.pop());
        }
        return s2.pop();
    }
    
    /** Get the front element. */
    public int peek() {
        if (!s2.isEmpty()) {
            return s2.peek();
        } else {
            while (!s1.isEmpty())
                s2.push(s1.pop());
        }
        return s2.peek();
    }
    
    /** Returns whether the queue is empty. */
    public boolean empty() {
        return s1.isEmpty() && s2.isEmpty();
    }
}

/**
 * Your MyQueue object will be instantiated and called as such:
 * MyQueue obj = new MyQueue();
 * obj.push(x);
 * int param_2 = obj.pop();
 * int param_3 = obj.peek();
 * boolean param_4 = obj.empty();
 */

Last updated